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Abstract-A new stochastic linearization technique is employed to investigate the large amplitude
random vibrations ofa simply supported or a clamped beam on elastic foundation under a stochastic
loading which is space-wise either (a) white noise or (b) uniformly distributed load and lime-wise
white noise. The new version of the stochastic linearization method is based on the requirement
that the mean square deviation of the strain energy of the nonlinearly deformed beam, and the
strain energy of the equivalent beam in a linear state, should be minimal. As a result, the modal
mean square displacements are expressed as solutions of a set of nonlinear algebraic equations.
Results obtained by the conventional equivalent linearization method and by the new technique are
compared with the numerical results obtained from integration of the exact probability density
function (when the exact solution is available) or with the result of the Monte Carlo simulations
(when the exact solution is unavailable). It is shown that the new stochastic linearization technique
yields a much more accurate estimate of the mean square displacement than the classical linearization
method, which has attracted the past interest of about 400 investigators in a variety of nonlinear
random vibration problems.

1. INTRODUCTION

The random vibrations of beams in linear and nonlinear settings have been investigated by
several authors. Linear random vibrations have been investigated by Eringen (1957),
Bogdanoff and Goldberg (1960), Crandall and Yildiz (1962), Elishakoff and Livshits (1984)
and Elishakoff (1987), by employing the normal mode method. Eringen (1957), Elishakoff
(1987) and Elishakoff and Livshits (1984) were able to sum up the infinite series of modal
contributions and derive closed-form solutions for simply supported beams subjected to
loading which is both time-wise and space-wise white noise. For this particular excitation,
Herbert (1964, 1965) succeeded in obtaining an exact, although not a closed-form solution,
for probability density function of modal displacements. For the general case of excitation,
when dealing with the nonlinear stochastic boundary value problems, most investigators
have employed approximate techniques: either the classical perturbation method or the
stochastic linearization technique. The latter method has attracted numerous investigators.
Indeed the only monograph on this subject is that by Roberts and Spanos (1990) which
lists approximately 250 papers utilizing the stochastic linearization technique. The review
by Sinitsin (1974) lists about 120 studies predominantly performed in Russia. The review
paper by Socha and Soong (1991) lists numerous publications written in both the West and
East. Thus presently there are approximately 400 studies based on the classical stochastic
linearization technique. Unfortunately, these methods have severe limitations: the per
turbation method usually only leads to results of acceptable accuracy for the case of small
nonlinearity; stochastic linearization technique can yield an error as large as 20% in the
estimate of the mean square response for some cases of nonlinearity and excitation. It
should be borne in mind that even an exact solution by the Fokker~Planck equation method
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may involve a large amount of multiple integrations to evaluate the mean square responses
if many modes need to be included. The latter difficulty is of purely numerical nature
whereas the approximate methods have their inherent difficulties. Furthermore, the fact
that the (numerically cumbersome) exact solution is available for extremely specific cases
of excitations rules out its general application. The above disadvantages of the approximate
methods and the absence of the exact solution for the general loading case encouraged the
present authors to seek an alternative approximate technique. An improved stochastic
linearization method seems to be an attractive method in this respect due to the fact that it
not only retains the advantages of the conventional stochastic linearization method, such
as simplicity and straightforward manner of derivation, but also may greatly improve the
accuracy. Several authors recently studied the various versions of the improved stochastic
linearization technique (Elishakoff and Zhang, 1991 ; Elishakoff, 1991; Zhang et aI., 1990;
Fang and Fang, 1991). In this study a new stochastic linearization technique, as discussed
in several references (Elishakoff and Zhang, 1991 ; Elishakoff, 1991 ; Zhang et al., 1990), is
extended to treat random vibrations of the nonlinearly deformed beam. The main idea of
the new method consists of the requirement that the mean square value of the difference of
potential energies of deformation, associated with the original nonlinear equation and its
equivalent linear counterpart, should be minimal. It is instructive to first elucidate the basic
idea on the example of the single degree-of-freedom system, governed by the following
differential equation:

mx+cx+g(x) = F(t) (1)

where F(t) is a random excitation resulting in stochastic response x(t) ; g(x) is a nonlinear
deterministic function of displacement x. Within the stochastic linearization scheme, this
differential equation is replaced by the "equivalent" linear equation

mX+cX+keqx = F(t) (2)

where the coefficient k eq is determined through some suitable criterion of equivalence. In
the linearization scheme utilized by Elishakoff and Zhang (1991), the equivalence criterion
is chosen as follows:

(3)

where U(x) is the potential energy of deformation of the original nonlinear structure, i.e.

U(x) = f g(rx) drx.

This is accomplished by requiring

d { I 2 2}dk E [U(x) - 2keq X] = O.
eq

Equation (5) results in the following expression for the equivalent spring stiffness:

k = _2E_[_x_
2

U_(_x_)]
eq E(x4 )

(4)

(5)

(6)

In recent studies (Elishakoff and Zhang, 1991; Elishakoff, 1991; Zhang et al., 1990), the
authors have demonstrated the accuracy of this linearization technique by comparing the
computed mean square displacements from different stochastic linearization methods with
some known exact solutions. In the present study, the authors extend the above technique
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Fig. I. Nonlinear beam on elastic foundation.

x

to continuous structures. The main idea is the same as the one described for the single degree
of-freedom system, except that the original continuous nonlinear structure is replaced by
a multi degree-of-freedom linear system, and a set of equivalent spring stiffnesses are
expressed by equations analogous to eqn (6) with x now corresponding to different modal
displacements. The procedure will be elucidated in detail for random vibrations of the
nonlinearly deformed beam.

In this paper we consider beams simply supported or clamped at their ends. Two
loading conditions are considered: (a) the space-wise and time-wise white noise, in which
case the exact solution is also obtained, (b) the space-wise uniformly distributed load and
time-wise white noise, in which case no exact solution is available and the Monte Carlo
simulations should be performed. For all cases and a wide variety of levels of excitation,
the proposed method turns out to be superior to the classical stochastic linearization
method.

2. FORMULATION OF THE PROBLEM

Consider a beam on an elastic foundation with pin-ended supports that are restrained
from axial motion (Fig. 1). The beam is under a loading q(x, t) which is space-wise and
time-wise white noise with the following auto-correlation function:

(7)

The deflection is represented by the Fourier series in terms of mode shapes of the undamped
beam

N nnx
w(x, t) = L wn(t) sin-;

n= 1 L
(8)

Wn(t) is the modal contribution corresponding to nth mode. It is assumed that only the first
N modes of the beam significantly contribute to formulating the response. However, it
should be borne in mind that the assumption that the power spectral density of the load is
that of white noise implies that all the modes are excited and contribute to the response of
the beam; N is determined by the required accuracy in the evaluation of the specific response
characteristic, such as mean square displacement or mean square stress. Crandall and Yildiz
(1962) have shown that for the linearly deformed beam under white noise excitation, if the
infinite series representing quantities such as mean square displacement, mean square stress,
etc., converge, then the results can be made as accurate as desired by taking sufficiently
large N. It is reasonable to expect similar results for the nonlinear problem. We consider a
Bernoulli-Euler beam with transverse damping. Due to the fact that the equivalence
criterion will utilize the concept of energy, we first formulate appropriate energies of the
beam. Kinetic energy of the beam is given by, with eqn (8) taken into account,
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pA fL (aw)2 pAL ~ (. )2.T = - - dx = -- 1... W n ,

2 0 at 4 n ~ I
(9)

the potential energy of bending deformation reads

The potential energy of stretching is given by

AE [1 fL (aW)2 J2 n
4
AE [N 2 2J2V =- - - dx = -~ L: n Wn

s 2L 2 0 ax 32L3 n ~ I

whereas the potential energy of the deformation due to elastic foundation is

(10)

(11)

(12)

where kr is the translational stiffness of Winkler foundation. The potential function of a
load is

~ = - f q(x, t)w(x, t) dx.

We expand the load in the series analogous to eqn (8)

N nnx
q(x, t) = L qn(t) sinL

n = 1

where again N terms have been retained. Then VI becomes

The Lagrangian .It' = T - V, where V = Vb + Vs+ Ve + Vb may now be written as

(13)

(14)

(15)

(16)

The equations of motion are

:t(:~)-~~ =0 (n= 1,2, ... ,N) (17)

where Wn are considered as generalized coordinates. Substitution ofeqn (16) into (17) yields
the following N equations in terms of the modal amplitudes wn(t) :
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where f3 is an introduced linear viscous damping term. In addition, the following notations
have been utilized:

kr
a=--

pAW6'
(19)

Equation (18) is a nonlinear stochastic differential equation. We seek the mean square
response of the modal amplitudes. In this study, a new stochastic linearization technique
described in the preceding section for the single degree-of-freedom system, is generalized
to investigate the continuous structure at hand. The nonlinear system (18) is replaced by
the following equivalent linear one:

.. +L . +kIn) - 1, ( )Wn pA Wn eq Wn - n X (n = 1,2, ... ,N). (20)

In eqn (20), it is assumed that the replacing linear system is a decoupled one. The question
of the decoupling will be addressed in detail in the Appendix.

In our problem, the total potential energy of the system (18) is

(21)

We generalize the requirement of eqn (3), valid for the single degree-of-freedom system,
for the continuous beam by requiring

(22)

which is achieved by using conditions

~m){E[U(Wl'W2,,,.'WN)-I ~k~~W~J2}=0 (m= 1,2, ... ,N). (23)
dkeq n = 1

The conditions (23) are equivalent to

After some algebra, we arrive at the following expression for nonlinear spring constants:

(25)

where

{keq}T = {k~~) k~~) ... k~~)}

{BV = {E[wiU] E[w~Ul ... E[w~U]}
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We denote

[Al =
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[

E[wi wi] E[wi wn

E[w~wn E[w~wn

E[wLwi] E[wLw~l

E[WiWL1]
E[w~wLJ

E[wLwLl

(26)

(27)

The Gaussian assumption for distribution of Wi and the subsequent conclusion that the
equivalent system is decoupled (see the Appendix), leads to the independence between
different modal amplitudes Wi and wj (i of- j). Therefore

E[w;J = 3y2

E[w7wJ] = YiYj i of- j.

For simplicity, let us investigate the particular case N = 3. We have

4YzY3
-Y3 -Y2

Yl

1 4Y1Y3
[Al- 1 = -Y3 -Yl

lOY1YzY3 Yz

4YIY2
-Yz -YI

Y3

Consequently, we obtain

(28)

(29)

(30)

Under the assumption that the system is driven by zero mean Gaussian white noise qn with
spectral density So, i.e./n with spectral density So/(pA?, we obtain from eqn (20)

(31)

or

(32)

where

(33)

Substituting k~~) in eqn (32) into eqn (25) and noting the fact that Wn is Gaussian yields
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where

(34)

2 W6
E[w, U] = T YI {(3Yl + 16Y2 +SIY3) +a(3y, + Y2 + Y3)

1 2 2 2 )}+ SR2 (l5YI + 4SY2 + 243Y3 + 24YIY2 + 72Y2Y3 + 54YIY3

2 W6
E[w2U] = TY2{(Y1 +4SY2 +SIY3)+a(Y1 +3Y2 +Y3)

+ _1_(3Y7 +240y~ +243y~+24YIY2 +216Y2Y3 + ISYIY3)}
SR 2

W
2

E[wj U] = --fY3 {(YI + 16Y2 + 243Y3) + aU'1 + Y2 + 3Y3)

1
+ SR 2 (3YT +4Sy~ + 1215yj +8Y'Y2 +216Y2Y3 +54YIY3)}' (35)

Substitution of eqn (35) into eqn (34) results in a set of algebraic nonlinear equations for
Yh Y2 and Y3' For different excitation levels characterized by 0"0, the foundation modulus a
and various radii of gyration R, eqn (34) can be solved numerically. In our study, the
standard Levenberg-Marquardt algorithm is implemented.

With Yi = E[w;] obtained, we arrive at the mean square response of the beam as

(36)

However, the modal amplitudes Wm are uncorrelated. Therefore, while the membrane
stress causes the modal amplitudes to become statistically dependent, it still leaves them
uncorrelated. Equation (36) then reduces to

(37)

3. COMPARISON WITH OTHER METHODS

3.1. Fokker-Planck equation method
From the solution of the Fokker-Planck equation, the exact expression of the prob

ability density function is obtained as

I { I [N 4 2 1 N N 22 2 2 N 2J}P(WI,W2,··.,W",) =-exp -~J L: n W"+--2 L: I m n WmW,,+a L: w"
C 20"0 ,,~I 8R ,,~, m ~ I " = I

(38)

where c is the normalization factor, i.e.
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(39)

Equation (38) coincides with that of Herbert (1964) except that we have introduced an
additional term associated with the elastic foundation. Hence, the modal mean square
responses are obtained by integration

(40)

Equation (40) must be evaluated by numerical integration.

3.2. Conventional stochastic linearization technique
By the conventional equivalent linearization method, we obtain

(41)

From the equivalent linear system (20), we have eqn (31). Substituting k~~) in eqn (41) into
eqn (31) yields

(42)

If only the first three modes are considered, in view of eqn (27), we obtain

(43)

For specific values of 0"6, :x and R, one can evaluate E[wf], E[w~] and E[wn through solving
the set of nonlinear equations eqn (43).

4. RESULTS AND DISCUSSION

Numerical computations have been performed for the mean square deflection at the
midspan of the beam for various values of the three parameters 0"6, :x and R. The results
from the three methods are presented in Figs 2-5. As pointed out by Seide (1975, 1976,
1988), Seide and Aokimi (1983), Seide and Tehranizadeh (1988) and as is confirmed in eqn
(37), accurate values of the mean square deflections can be obtained by using a three term
approximation, while the number of terms required for accurate stress values may be much
larger. In the present study, only the first three modal displacements are considered, with
the emphasis on demonstrating the effectiveness of the new technique.
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Fig. 2. Effect of foundation stiffness (a) on the mean square deflection at the midspan of the simply
supported beam (space-wise white noise loading).

As is seen from the differential equation (18), when R tends to infinity the effect of the
nonlinearity disappears. Therefore, the magnitude of 1/R can be viewed as the parameter
related to the magnitude of nonlinearity. The effect of the foundation stiffness on the mean
square maximum deflection at the midspan of the beam is shown in Fig. 2 for one set of levels
of excitation and nonlinearity. It can be seen that the new equivalent linearization method
yields more accurate results than the conventional technique. Also, it is shown that the new
method usually gives greater values of mean square deflection than the exact solution, while
the conventional method yields values below the exact one. Furthermore, when the stiffness
of the foundation kr becomes larger (and consequently the parameter a is larger too),
both methods tend to produce equally accurate results. This conclusion should have been
anticipated in view of the fact that the system is "more" linear in this case, due to linearity
of the Winkler foundation model. However, when a is small, the new stochastic linearization
method achieves a much better estimate of the mean square deflection than the conventional
technique. The mean square deflections vs parameter R are shown in Figs 3 and 4; the new
method performs much better than the conventional stochastic linearization technique for
the relatively high nonlinearity of the system, i.e. R is from 0 to 1.

The superior performance of the energy based linearization can be partially explained
by the fact that the exact probability density given in eqn (38) is expressible in terms of the
strain energy of the system, given in eqn (21). Indeed, eqn (38) can be rewritten as follows:

3.2

(T2 = 10, Q' = 0

2.6

"0'=i
u

'"<:;::: 1.9
'""C

~::sgo 1.3

"'"'"~ Linearization0.6
Present method
Exact

0 0.2 0.4 0.6 0.8 1.0

R

Fig. 3. Effect of nonlinearity (R) on the mean square deflection at the midspan of the simply
supported beam ((T~ = 10, a = 0) (space-wise white noise loading).



1580 I. Elishakoff et al.

3.0 ..---r--.....,--"T"""-~--....---r--......--...,.....-~----.
0-2 = 10, ex = 1

2.4
c
.9
t>
<Ll

~ 1.8
"0

~
;:l

~ -1.2

;
<Ll

::E
0.6

o 0.2 0.4 0.6

Linearization
Present method
Exact
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Fig. 4. Effect of nonlinearity (R) on the mean square deflection at the midspan of the simply
supported beam (0"6 = 10,:x = I) (space-wise white noise loading).

(44)

where the expression of strain energy is given in eqn (2I). Note that this interesting feature
for the single degree-of-freedom systems was discussed by several authors. One may consult,
for example, Caughey (1963) and eqn (8.35.a) in Lin (1967).

The effect of the strength of excitation on the accuracy of the two methods is shown
in Fig. 5, where the vertical axis denotes the percentage error of the mean square deflection
at the midspan of the beam either between the conventional linearization method or the
new linearization method, and the exact solution; the new approach achieves more accurate
results than the conventional technique for all the excitation levels.

To get additional insight into the performance of the proposed method, the other set
of boundary conditions was investigated, namely, the beam clamped at both ends under
both the space-wise and time-wise white noise. Figure 6 portrays the mean square dis
placement calculated by the proposed stochastic linearization method, conventional sto
chastic linearization method and exact solution. An exact solution follows the derivation

R =0.5, Ci = 1.0 - - - - Linearization
. - . - Present method

._._.-.-._.-._._._.-._.-
'-'-'-'-'-'-'-'

~ 4
<Ll
;;p
E
<Ll

B 0
<Ll
0.

.s
....o

J1 -4 .........

--- --- --- ----- --------------
-81·L.---'---3~-......---I.--"----...L6--"---.....l8L..--.......--J1O

0-2

Fig. 5. Percentage error in the determination of the mean square deflection by the two methods in
comparison with the exact solution (space-wise white noise loading).
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Fig. 6. Effect of nonlinearity (R) on the mean square deflection at the midspan of the beam clamped
at both ends (()"~ = 10. IY. = I) (space-wise white noise loading).

given in eqns (14)-(32) except that instead of the sinusoidal mode shape in eqn (8), the
following mode shape is utilized:

(45)

where

IX. = {tanh hi..
I coth!"

2 II

ifm is odd

ifm is even
(46)

and the values of (/ are the consecutive solutions of the transcendental equation

(47)

As is seen from Fig. 6 for the clamped beam too, the proposed method results in the mean
square response which is much closer to the exact solution than the classical linearization
method.

In both cases of the beams considered, the exact solutions were also obtained. The
natural question arises: how does the proposed method perform when the exact solution
is not available? To answer this question, the additional loading condition was also inves
tigated, namely, the load q(x, t) was represented as a product r(x)q(t). Whereas q (t) was
assumed to be a weakly stationary Gaussian random process namely white noise, rex) was
taken as a deterministic function. Specifically rex) was taken as a constant, representing
space-wise uniformly distributed load. This representation is valid for members ofrelatively
short length when the correlation length of the excitation is much greater than the length
of the beam. For such a loading condition, an exact solution is unavailable and instead
Monte Carlo simulations should be conducted to check the accuracy of the proposed
stochastic linearization. Figure 7 depicts results of such a comparison for the simply
supported beam. As is clearly seen, the proposed method again exhibits much higher
accuracy than the conventional linearization technique.

To sum up, for different boundary conditions and the loading patterns, the suggested
method is superior to the classical stochastic linearization technique, especially in the
important high nonlinearity range of the parameters.
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Fig. 7. The variation of the mean square deflection at the midspan of the simply supported beam
with the nonlinearity coefficient R (space-wise uniformly distributed load).
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Uncoupledness olequivalentlinear system
Under the assumption that the modal displacements are normally distributed, one can show that the equivalent

linear system is uncoupled. Indeed, suppose that the equivalent linear system is governed by the vector equation

M,v+Ov+Kw =f (AI)

where M and C are diagonal mass and damping matrices, K is a non-diagonal stiffness matrix, and Is are
independent white noises. New equivalence criterion requires

(A2)

where

H) = {~VI VV2 ttiN } T

K= [k,J

The condition that the derivatives of (A2) with respect to kuequal zero leads to

For simplicity, let us consider the two degree-of-freedom system. Suppose

Then

(A3)

(A4)

(AS)

wiw,k" + 2w~wikl2 +W,Wik22J

w~wik" + 2w,wik 12 + w;k"

[
w~U

E[wU(w) 117] =
w j vv2 U

Therefore eqn (A4) becomes

[A,]{k,} = 2{B,}

where

(A6)

(A7)

[

E[wi]

[A,] = E[wiw,]

E[w~wi]

2E[wiw2J E[W;Wi]]

2E[wT!viJ E[w,wl]

2E[w,wn E[w;]

{B,} = {E[w;U] E[w,w,UJ E[wiU]}T

The assumption of zero mean Gaussian distribution of the modes w" implies

E[wiw,l = 0

E[w,wn = o.

In view ofeqn (21), we also have

E[w, w, U] = o.

As a result, A, and 8, turn out to be

(A8)

(A9)

(AIO)
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f

E[H'il

[All = 0

2E[11Tw~J
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E[wlUW· (All)

Substituting [AIL lBI} in eqn (All) into eqn (A7), one obtains

(AI2)

This illustrates the uncoupledness of the equivalent linear system in the two degree-of-freedom setting. An
analogous proof holds for N > 2.


